Name	Period	Date	

Gravitational Attraction Worksheet

- 1. Sally pets the family dog, a black lab named Caesar, outside on her porch. The distance between Sally and the dog is about 1.00 m. Find the gravitational force between them if Sally weighs 500.0 N and the dog has a mass of 30 kg.
- 2. Determine the force of gravitational attraction between the earth (m = $5.98 \times 10^{24} \text{ kg}$) and a 70-kg physics student if the student is standing at sea level, a distance of 6.37×10^6 m from earth's center.
- 3. Determine the force of gravitational attraction between the earth ($m = 5.98 \times 10^{24} \text{ kg}$) and a 70-kg physics student if the student is in an airplane at 40000 feet above earth's surface. This would place the student a distance of 6.38×10^6 m from earth's center.
- 4. Suppose that you have a mass of 70 kg (equivalent to a 154-pound person). How much mass would another object have to have in order for your body and the object to attract each other with a force of 1-Newton when separated by 10 meters?

Planet	Radius (m)	Mass (kg)	g (m/s ²)
Mercury	2.43 x 10 ⁶	3.2×10^{23}	3.61
Venus	6.073 x 10 ⁶	4.88 x10 ²⁴	8.83
Mars	3.38×10^6	6.42 x 10 ²³	3.75
Jupiter	6.98 x 10 ⁷	1.901 x 10 ²⁷	26.0
Saturn	5.82 x 10 ⁷	5.68 x 10 ²⁶	11.2
Uranus	2.35×10^7	8.68 x 10 ²⁵	10.5
Neptune	2.27×10^7	1.03 x 10 ²⁶	13.3
Pluto	1.15 x 10 ⁶	1.2 x 10 ²²	0.61